KATHMANDU UNIVERSITY SCHOOL OF
MANAGEMENT

BBIS
COM 102 : 3 Credit Hours

7. Functions contd...

07/02/2022



Functions Contd...

Call by Value and Call by Reference



Introduction

» Function call by value is the default way of calling a function in C programming.
»terminologies that we will use while explaining this:
» Actual parameters: The parameters that appear in function calls.

» Formal parameters: The parameters that appear in function declarations or
definition.

“ Call Type and Description

1. This method copies the actual value of an argument into the formal parameter of the function. In
this case, changes made to the parameter inside the function have no effect on the argument.

2. This method copies the address of an argument into the formal parameter. Inside the function,
the address is used to access the actual argument used in the call. This means that changes made

to the parameter affect the argument.

https://www.tutorialspoint.com/cprogramming/c_functions.htm



my_func(vall, val2) e=—

void my_func(x, y)

{

y

Aip—

X = 40;
y = 50;
// more statements

A statement calling
function my_func.
Initially

vall is 10
val2 is 12

create a copy of
vall and val2

my_func() works
on the copy of
vall and val2

Thngur u. com




Example ... Call by Value

#include <stdio.h>

int sum(int a, int b) // formal parameters
{

int c=a+b;

return c;

}

int main()

{

int varl =10;
int var2 = 20;

int var3 = sum(varl, var2); // actual
parameters

printf("%d", var3);
return O;

}

In the given example variable a and b are the
formal parameters (or formal arguments).
Variable varl and var2 are the actual arguments
(or actual parameters).

The actual parameters can also be the values.

Like sum(10, 20), here 10 and 20 are actual parameters.



Call by value in C

* The value of the actual parameters is copied into the formal
parameters. In other words,

e the value of the variable is used in the function call.

e Cannot modify the value of the actual parameter by the formal
parameter.

* Different memory is allocated for actual and formal parameters

* since the value of the actual parameter is copied into the formal
parameter.



Example

void change(int number) {
printf("Before adding value inside function num=%d \n",number);

number=number+100;
printf("After adding value inside function num=%d \n", number);

}

int main() {
int x=100;
printf("Before function call x=%d \n", x);
change(x);//passing value in function
printf("After function call x=%d \n", x);
return O;

)



Call by Value Example: Swapping the values of the
two variables

#include <stdio.h>

void swap(int, int); //prototype of the function

int main()

{
inta=10;
int b = 20;

printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main
swap(a,b);

printf("After swarpping values in main a = %d, b = %d\n",a,b); // The value of actual parameters do not change by changing the form
al parameters in call by value, a =10, b =20

}

void swap (int a, int b)
{
int temp;
temp = a;
a=b;
b=temp;
printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a =20, b = 10



Call by reference

* Here, the address of the variable is passed into the function call as
the actual parameter.

* The value of the actual parameters can be modified by changing the
formal parameters since the address of the actual parameters is
passed.

* Here, the memory allocation is similar for both formal parameters
and actual parameters.

e All the operations in the function are performed on the value stored
at the address of the actual parameters, and the modified value gets
stored at the same address.



Example ...

#include <stdio.h>
int increment(int var)
{

var = var+1;

return var;

}

int main()

{

int num1=20;

int num2 = increment(numl);
printf("num1 value is: %d", num1);
printf("\nnum2 value is: %d", num2);
return O;

}

As mentioned in the example, in the call by
value the actual arguments are copied to the
formal arguments, hence any operation
performed by function on arguments doesn’t
affect actual parameters.

Output:
num1 value is: 20
num?2 value is: 21

We passed the variable num1 while calling the
method, but since we are calling the function
using call by value method, only the value of
num1 is copied to the formal parameter var.
Thus change made to the var doesn’t reflect in
the num1.



Call by Reference Example: Swapping the values of the two
variables

#include <stdio.h>
void swap(int *, int *); //prototype of the function
int main()
{
inta=10;
intb =20;
printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main
swap(&a,&b);
printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters do change in call by reference, a = 10, b = 20
}
void swap (int *a, int *b)
{
int temp;
temp = *a;
*a=*Db;
*b=temp;

printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a =20, b = 10



Fundamental difference : Call by Value and

Call by Reference

https://www.javatpoint.com/call-by-value-and-call-by-reference-in-c

modified

12



Difference between Call by Value and Call by
Reference

e See here:

* https://www.geeksforgeeks.org/difference-between-call-by-value-and-call-
by-reference/

* https://www.javatpoint.com/call-by-value-and-call-by-reference-in-c

13


https://www.geeksforgeeks.org/difference-between-call-by-value-and-call-by-reference/

Recursive function

»The process in which a function calls itself directly or indirectly is
called recursion and the corresponding function is called as recursive

function.

» Using recursive algorithm, certain problems can be solved quite
easily. e.g. Towers of Hanoi (TOH), Inorder/Preorder/Postorder Tree
Traversals, DFS of Graph, etc.

»There must be some conditional statement to terminate the
recursion otherwise the program can go through unending loops.



Structure: Recursive function

Example

void recurse()

{

recurse();

}

int main()

{

recurse();

void printFun(int test)
{
if (test < 1)
return;
else {
cout << test<<"":
printFun(test - 1); // statement 2
cout << test<<"":
return;

}
}

// Driver Code
int main()

{
int test = 3;

printFun(test);
}



void pnntFun(3)
test=3
rintFun(3) calls printFun(2
1. printf(“%d", test); P ey n2)
e r ) R i s e et i
v =4 ~»3. printf(“iis %d",i); I
| 4. retum; void printFun (2) %= = =
: test=2
| 1. printf(“iis %d" i);
' 2. printFun(l);, ==¢t==-~-
Sk o PP SRR R SYAC
----------- 4=aqe==4 retum;
! test=1
! 1.
: Returns to printFun(2) 2.
| -." - 3.

https://www.geeksforgeeks.org/recursion/

-4,

void printFun (1)« - =

printf(“i is %d" i);
printFun (0), = -~
printf(“i is %d" i);
retum;

printFun(2) calls printFun(1)

printFun(1) calls printFun(0)

Returns to printFun(1)

void printFun (0¥t - =
test=0
if(i<1)
retum,

16



Structure: Recursive function

Stack in C

When any function is called from main(), the memory is allocated
on the stack.

Pointer
R Top of Stack
A recursive function calls itself, the memory for a called function is
allocated on top of memory allocated to calling function and
different copy of local variables is created for each function call.
When the base case is reached, the function returns its value to the
function by whom it is called and memory is de-allocated and the i

process continues.

17



How does recursive function work ?

void recurse()
{
recurse(); . . . o
The recursion continues until some condition is met
} to prevent it.
int main() o o
{ To prevent infinite recursion, if...else statement (or
similar approach) can be used where one branch
recurse(); makes the recursive call, and other doesn't.

}



Recursive Function: Sum of natural numbers from 1- N

#include <stdio.h>

int sum(int n); int sum(int n) {

| _ if (n !1=0)

int main() { // sum() function calls itself
int number, result; return n + sum(n-1);
printf("Enter a positive else

integer: "); return n;

scanf("%d", &number); }

result = sum(number);
printf("sum = %d", result);

return O;

}




Recursive function to calculate factorial of a number

#tinclude <stdio.h>
int fact (int);

int main()

{

int n,f;

printf("Enter the number
whose factorial you want to
calculate?");

scanf("%d",&n);

f = fact(n);
printf("factorial = %d",f);
}

int fact(int n)

{

if (n==0)

{

return O;

}

else if (n==1)
{

return 1;

)

else

{

return n*fact(n-1);

}
}



lteration Vs. Recursion

Iteration

Uses repetition structures such
as for,while loops.

It is counter controlled and the
body of the loop terminates
when the termination condition
i1s failed.

They execute much faster and
occupy less memory and can be
designed easily.

Uses selection structures such
as if-else,switch statements.

It is terminated with a base
condition.The terminal
condition is gradually reached
by invocation of the same
function repeatedly.

It is expensive in terms of

processor time and memory
usage.

21



Classwork

1. WAP to count digits using recursion.
2. WAP to calculate sum of all digits using recursion
3. WAP to print Fibonacci series using recursion.

22



