
KATHMANDU UNIVERSITY SCHOOL OF
MANAGEMENT

BBIS

COM 102 : 3 Credit Hours

7. Functions contd…

07/02/2022
1

2

Functions Contd...

Call by Value and Call by Reference

Introduction
➢Function call by value is the default way of calling a function in C programming.

➢terminologies that we will use while explaining this:

➢Actual parameters: The parameters that appear in function calls.

➢Formal parameters: The parameters that appear in function declarations or
definition.

3

S.No Call Type and Description

1. This method copies the actual value of an argument into the formal parameter of the function. In
this case, changes made to the parameter inside the function have no effect on the argument.

2. This method copies the address of an argument into the formal parameter. Inside the function,
the address is used to access the actual argument used in the call. This means that changes made
to the parameter affect the argument.

https://www.tutorialspoint.com/cprogramming/c_functions.htm

…

4

Example ... Call by Value

#include <stdio.h>

int sum(int a, int b) // formal parameters

{

int c=a+b;

return c;

}

int main()

{

int var1 =10;

int var2 = 20;

int var3 = sum(var1, var2); // actual
parameters

printf("%d", var3);

return 0;

}
5

• In the given example variable a and b are the
• formal parameters (or formal arguments).
• Variable var1 and var2 are the actual arguments

(or actual parameters).
• The actual parameters can also be the values.
• Like sum(10, 20), here 10 and 20 are actual parameters.

Call by value in C

• The value of the actual parameters is copied into the formal
parameters. In other words,
• the value of the variable is used in the function call.

• Cannot modify the value of the actual parameter by the formal
parameter.

• Different memory is allocated for actual and formal parameters
• since the value of the actual parameter is copied into the formal

parameter.

6

Example

void change(int number) {

printf("Before adding value inside function num=%d \n",number);

number=number+100;

printf("After adding value inside function num=%d \n", number);

}

int main() {

int x=100;

printf("Before function call x=%d \n", x);

change(x);//passing value in function

printf("After function call x=%d \n", x);

return 0;

}

7

Call by Value Example: Swapping the values of the
two variables
#include <stdio.h>

void swap(int , int); //prototype of the function

int main()

{

int a = 10;

int b = 20;

printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

swap(a,b);

printf("After swapping values in main a = %d, b = %d\n",a,b); // The value of actual parameters do not change by changing the form
al parameters in call by value, a = 10, b = 20

}

void swap (int a, int b)

{

int temp;

temp = a;

a=b;

b=temp;

printf("After swapping values in function a = %d, b = %d\n",a,b); // Formal parameters, a = 20, b = 10

}
8

Call by reference

• Here, the address of the variable is passed into the function call as
the actual parameter.

• The value of the actual parameters can be modified by changing the
formal parameters since the address of the actual parameters is
passed.

• Here, the memory allocation is similar for both formal parameters
and actual parameters.

• All the operations in the function are performed on the value stored
at the address of the actual parameters, and the modified value gets
stored at the same address.

9

Example ...
#include <stdio.h>

int increment(int var)

{

var = var+1;

return var;

}

int main()

{

int num1=20;

int num2 = increment(num1);

printf("num1 value is: %d", num1);

printf("\nnum2 value is: %d", num2);

return 0;

}

10

As mentioned in the example, in the call by
value the actual arguments are copied to the
formal arguments, hence any operation
performed by function on arguments doesn’t
affect actual parameters.

Output:
num1 value is: 20
num2 value is: 21

We passed the variable num1 while calling the
method, but since we are calling the function
using call by value method, only the value of
num1 is copied to the formal parameter var.
Thus change made to the var doesn’t reflect in
the num1.

Call by Reference Example: Swapping the values of the two
variables
#include <stdio.h>

void swap(int *, int *); //prototype of the function

int main()

{

int a = 10;

int b = 20;

printf("Before swapping the values in main a = %d, b = %d\n",a,b); // printing the value of a and b in main

swap(&a,&b);

printf("After swapping values in main a = %d, b = %d\n",a,b); // The values of actual parameters do change in call by reference, a = 10, b = 20

}

void swap (int *a, int *b)

{

int temp;

temp = *a;

*a=*b;

*b=temp;

printf("After swapping values in function a = %d, b = %d\n",*a,*b); // Formal parameters, a = 20, b = 10

} 11

Fundamental difference : Call by Value and
Call by Reference

12
https://www.javatpoint.com/call-by-value-and-call-by-reference-in-c

Difference between Call by Value and Call by
Reference
• See here:

• https://www.geeksforgeeks.org/difference-between-call-by-value-and-call-
by-reference/

• https://www.javatpoint.com/call-by-value-and-call-by-reference-in-c

13

https://www.geeksforgeeks.org/difference-between-call-by-value-and-call-by-reference/

Recursive function

➢The process in which a function calls itself directly or indirectly is
called recursion and the corresponding function is called as recursive
function.

➢Using recursive algorithm, certain problems can be solved quite
easily. e.g. Towers of Hanoi (TOH), Inorder/Preorder/Postorder Tree
Traversals, DFS of Graph, etc.

➢There must be some conditional statement to terminate the
recursion otherwise the program can go through unending loops.

14

Example

void recurse()

{

...

recurse();

...

}

int main()

{

...

recurse();

...

}

15

void printFun(int test)
{

if (test < 1)
return;

else {
cout << test << " ";
printFun(test - 1); // statement 2
cout << test << " ";
return;

}
}

// Driver Code
int main()
{

int test = 3;
printFun(test);

}

Structure: Recursive function

16
https://www.geeksforgeeks.org/recursion/

17

When any function is called from main(), the memory is allocated
on the stack.

A recursive function calls itself, the memory for a called function is
allocated on top of memory allocated to calling function and
different copy of local variables is created for each function call.

When the base case is reached, the function returns its value to the
function by whom it is called and memory is de-allocated and the
process continues.

Structure: Recursive function

How does recursive function work ?

void recurse()

{

...

recurse();

...

}

int main()

{

...

recurse();

...

}

18

The recursion continues until some condition is met
to prevent it.

To prevent infinite recursion, if...else statement (or
similar approach) can be used where one branch
makes the recursive call, and other doesn't.

Recursive Function: Sum of natural numbers from 1- N

#include <stdio.h>

int sum(int n);

int main() {

int number, result;

printf("Enter a positive
integer: ");

scanf("%d", &number);

result = sum(number);

printf("sum = %d", result);

return 0;

}

19

int sum(int n) {
if (n != 0)
// sum() function calls itself
return n + sum(n-1);
else
return n;
}

Recursive function to calculate factorial of a number

#include <stdio.h>

int fact (int);

int main()

{

int n,f;

printf("Enter the number
whose factorial you want to
calculate?");

scanf("%d",&n);

f = fact(n);

printf("factorial = %d",f);

} 20

int fact(int n)
{
if (n==0)
{
return 0;
}
else if (n == 1)
{
return 1;
}
else
{
return n*fact(n-1);
}
}

Iteration Vs. Recursion

21

Classwork
1. WAP to count digits using recursion.

2. WAP to calculate sum of all digits using recursion

3. WAP to print Fibonacci series using recursion.

22

